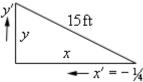
Derivatives Definition and Notation

If	then the derivative is defined to be	\lim_{0} —	
If	then all of the following are	If	all of the following are equivalent
equivalent	notations for the derivative.	notations for derivative evaluated at	

Interpretation of the Derivative


If then,

Calculus Cheat Sheet t

Related Rates

Sketch picture and identify known/unknown quantities. Write down equation relating quantities and differentiate with respect to using implicit differentiation (add on a derivative every time you differentiate a function of). Plug in known quantities and solve for the unknown quantity.

Ex. A 15 foot ladder is resting against a wall. The bottom is initially 10 ft away and is being pushed towards the wall at \(\frac{1}{2}\) ft/sewin\(\frac{1}{2}\) ft/sewin\(\frac{1}2\) ft/sewin\(\frac{1}2\) ft/sewin\(\frac{1}2\) ft/sewin\(\frac{1 is the top moving after 12 sec?

is negative because is decreasing. Using Pythagorean Theorem and differentiating,

2

10 12 $\frac{1}{4}$ 7 and After 12 sec we have

 $\sqrt{15^2 - 7^2} - \sqrt{176}$. Plug in and solve for

$$7 \quad \frac{1}{4} \quad \sqrt{176} \qquad 0 \qquad \frac{7}{4\sqrt{176}} \text{ ft/sec}$$

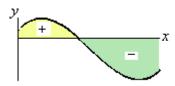
Ex. Two people are 50 ft apart when one starts walking north. The angle changes at

0.00 between them changing when

Integrals Definitions

Definit	e Integral: S	uppose	is continuous	Anti-Derivative : An anti-derivative of
on ,	. Divide	, into	subintervals of	is a function,
width	and choos	se * fro	m each interval.	
Then	1:	im	*	

1

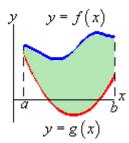

Calculus Cheat Sheet

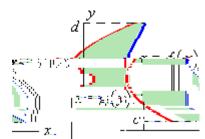
Applications of Integrals

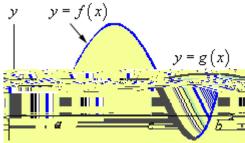
Net Area: represents the net area between

and the

-axis with area above -axis positive and area below -axis negative.


Area Between Curves: The general formulas for the two main cases for each are,


upper function(lower function(&


right function(

left function(

If the curves intersect then the area of each portion must be found individually. Here are some sketches of a couple possible situations and formulas for a couple of possible cases.

Volumes of Revolution : The two main formulas are

and

. Here is

some general information about each method of computing and some examples.

Rings

outer radius 2 inner radius 2

Limits: / of right/bot ring to / of left/top ring Horz. Axis use Vert. Axis use

> and and

Cylinders

2 radius width / height

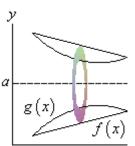
Limits: / of inner cyl. to / of outer cyl. Horz. Axis use Vert. Axis use

and

0

Ex. Axis:

0

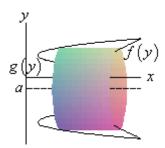

Ex. Axis:

0

Ex. Axis:

Ex. Axis:

0


outer radius: inner radius:

outer radius:

inner radius:

radius:

width:

radius :

width:

These are only a few cases for horizontal axis of rotation. If axis of rotation is the -axis use the 0 case with 0. For vertical axis of rotation (0) interchange and 0 and to get appropriate formulas.